

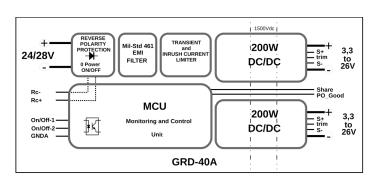
24/28Vdc MIL LOW PROFILE POWER SUPPLY MIL-STD-1275/MIL-STD704 COMPATIBLE Configurable Dual Channel

Features

- 10-45/100 Vdc input.
- Power up to 400W
- Reverse Polarity protection
- Inrush current limiter
- Output 3.3 to 52Vdc
- Dual configurable channel
- Board Parallelizable
- Efficiency up to 88%
- Galvanic isolation 1500Vdc
- Output voltage trim
- -40 to 85°C base-plate
- Thermal protection
- EU RoHs process

Standards

- MIL-STD-704
- MIL-STD-1275
- MIL-STD-461


Applications

- Mil-Ground-borne
- Naval

Product Information

The GRD40A designates a complete family of output power. The power supply can operate 400W low profile military grade C.O.T.S power supplies. The board includes EMI filters, reverse polarity protection, inrush current isolated 200W output channels that can be limiter and input surge limiter to fully comply with common input bus standards such as MIL-STD-1275 MIL-STD-704 and MIL-STD-461. The internal limiter withstands input bus disturbances from the 12 Vdc level given by MIL-STD-1275 IES (initial engagement surge), up to the 100 Vdc overvoltage level. Several fixed output voltages from 3.3 Vdc to 52 Vdc are available. The outputs channel can be adjusted from 10% to 110% of the nominal value. A sharing function allows multiple boards to be connected in parallel to increase processes and reduce time-to-market.

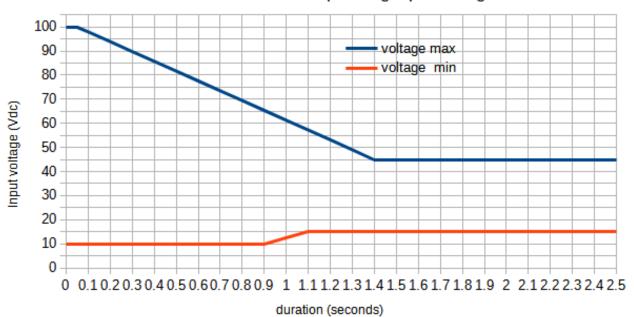
with a base temperature from -40 to 85°C. The GRD40A comes with 2 independent and connected in series, in parallel, with a common line, and +/- outputs. The power connections are made by 4mm studs, the monitoring signals are available on standard low power connectors. The 180mm x 140mm x 28mm board can be ordered coated (/V option), or with a metal chassis cover (/C option). The GRD40A is particularly suitable for demanding projects in various application areas such as land vehicles or marine. Ready to use, the GRD40A is designed to speed up design

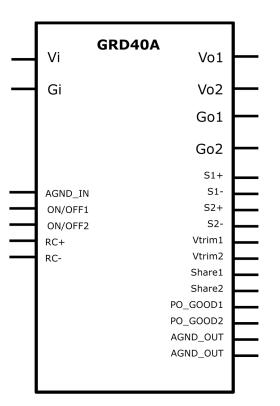
190 x 140 x 28 mm: In: : 7.5 x 5.5 x 1.09

Selection Guide

Part Number	Nominal Output Voltage (Vdc)	Output Current (Adc)	Output Power (W)	Part Number	Nominal Output Voltage (Vdc)	Output Current (Adc)	Output Power (W)
GRD40A-H-P	48	8.33	400	GRD40A-H-2E	+/-12	+/-16.6	200-200
GRD40A-H-J	28	13.3	373	GRD40A-H-2F	+/-15	+/-13.3	200-200
GRD40A-H-I	24	16.7	400	GRD40A-H-2I	+/-24	+/-8.33	200-200
GRD40A-H-F	15	26.7	400	GRD40A-H-IC	24-5	8.33-35	200-170
GRD40A-H-E	12	33.3	400	GRD40A-H-IE	24-12	8.33-16.6	200-200
GRD40A-H-C	5	70	350	GRD40A-H-IF	24-15	8.33-13.3	200-200
GRD40A-H-B	3.3	70	231	GRD40A-H-FB	24-3.3	8.33-35	200-115
GRD40A-H-CC	5-5	35-35	170-170	GRD40A-H-FC	15-5	13.3-35	200-170
GRD40A-H-EE	12-12	16.6-16.6	200-200	GRD40A-H-FE	15-12	13.3-16.6	200-200
GRD40A-H-FF	15-15	13.3-13.3	200-200	GRD40A-H-EB	12-3.3	16.6-35	200-115
GRD40A-H-II	24-24	8.33-8.33	200-200	GRD40A-H-EC	12-5	16.6-35	200-170
GRD40A-H-2C	+/-5	+/-35	+/-170	GRD40A-H-CB	5-3.3	35-35	170-115

Options:


/C cover /S screen /T- 55°C /V Coating



1-PRODUCT INTRODUCTION

GRD40A-H Transient operating input voltage

Max non operating input voltage = 202Vdc

TERMINALS FUNCTION

Vi: Positive input power connection. **Gi:** Return input power connection.

AGND_IN: return for the ON/OFF1, and ON/OFF2 signals.

ON/OFF1: Active low internal converter of channel 1 disable command.

ON/OFF2: Active low internal converter of channel 2 disable command.

 $\mathbf{RC+}\ \&\ \mathbf{RC-:}$ Remote control lines. When connected together,

these 2 lines disable the complete board that switches to green power mode.

Vo1, Vo2: Positive output channel 1 & 2.

Go1, Go2: Return output channel 1& 2.

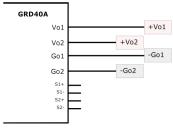
\$1+, \$2+: Low current channel 1& 2 positive sense.

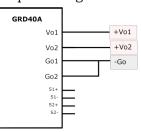
\$1-, \$2-: Low current channel 1& 2 negative sense.

Vtrim1, Vtrim2: Output voltage trim of channel 1& 2.

Share1, Share2: When outputs of GRD40AN are configured in parallel, these pins are internally connected together, and can be used to connect in parallel 2 GRD40AN.

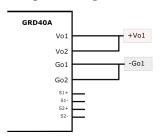
PO_GOOD1, PO_GOOD2: Power output good, opto-isolated output signal that raises when respectively output voltage of channel 1 and output voltage of channel 2 reaches the expected value.

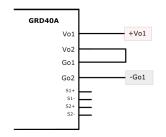

Note: in case of 2 different output voltages, the voltage across Vo1/Go1 is the lowest voltage



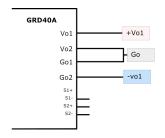
1-PRODUCT INTRODUCTION

OUTPUT CONFIGURATION:


Output configuration A:2 isolated channels



Output configuration **B**:2 independant channels common Go



Output configuration C: Parallel connection mode

Output configuration ${\bf D}$: Series connection mode

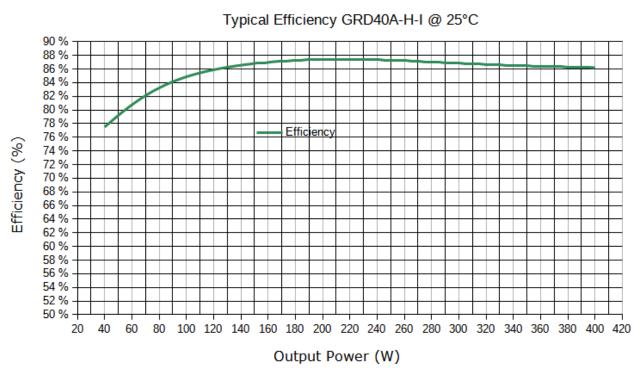
Output configuration ${\bf E}$: Symmetrical mode 2 channels

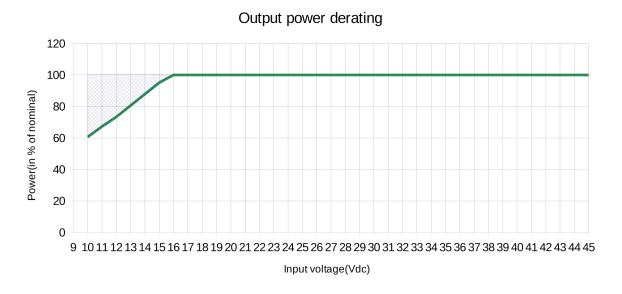
2-ELECTRICAL SPECIFICATIONS

Parameter	Conditions	Limit	Units	H input
INPUT				
Nominal Input Voltage (Ui)	Full temperature range	Nominal	Vdc	28
Undervoltage lock-out (UVLO)	Turn-on voltage turn-off voltage Pout 200W	Max. Min.	Vdc	11.1 9.1
Start up time	Ui Full load resistive load	Maximum	ms	50
No load input Power	Ui	Maximum	W	3.3
Input power in inhibit mode	Ui	Maximum	W	0.2
Maximum input Current	Full input voltage range	Maximum steady state	A	30
maximum input current	Pull input voltage range	Maximum Transient	A	(40)
Maximum input ripple Current	Ui Full load resistive load			l-Std-461 2 compliant
ОИТРИТ				
Set Point accuracy	Ui 75% load	Maximum	%	+/- 2
Output regulation (Line+Load+Thermal)	Vi min. To Vi max 0% to full load	Maximum	%	+/- 1
Output ripple voltage B output (5V) C output (5V) E output (24V) F output (12V) I output (24V) P output (12V)	Vi min. To Vi max	Typical	mVpp	100 100 220 250 480 500
Output voltage trim Range	As function of nominal output voltage Unchanged Max output current!	Minimum Maximum	%	10 110
Power Efficiency	Ui 75% load	Typical	%	86
Maximum capacitive load	Ui	Maximum	μF	5000
Switching Frequency	Full input voltage range*	Min Max	Khz	210 280
Isolation strength Input/Output Input/baseplate Output/ baseplate Output1 / Output2			Vdc Vdc Vdc Vdc	1500 500 500 100
Isolation strength	Tested at 500Vdc		MΩ	500

^{*}Main apparent switching frequency tone may be close to 500kHz as result of 250khz internal biphase synchronization

2-ELECTRICAL SPECIFICATIONS


Data are valid at +25°C, unless otherwi					
Parameter	Conditions	Conditions Limit		H input	
PROTECTIONS & CONTROLS					
Refers to MG	DM-201 datasheet for complet	e output prote	ection descripti	on	
Over Current Protection (OCP) Protection mode	FOLD BACK				
Over Temperature Protection Converters OTP level	Thermostat with hysteresis cycle (Base plate Temperature)	Max./hyst	°C	115/10	
CONTROLS and MONITORING	,				
On/Off module enable voltage	Ui 5mA max bias current	Minimum Maximum	Vdc Vdc	3,5 5.5	
On/Off module disable voltage	Ui	Maximum Minimum	Vdc Vdc	1 0	
Rc-Rc+ control dry contact impedance	Ui Disable mode	Maximum	Ohms	100	
RC-Rc+ max voltage	Ui Enable mode	Maximum	Vdc	15	
PI_GOOD max Vce voltage PI_GOOD max sink current (Ic)	For current < 2.5mA Ic For voltage < 10 Vdc .	Maximum	Vdc mAdc	60 15	
PO_GOOD(1)(2) trigger level	Ui As function of output voltage	Minimum	%	95%	
PO_GOOD max Vce voltage PO_GOOD max sink current (Ic)	For current < 2.5mA For voltage < 10 Vdc .	Maximum	Vdc mAdc	60V 15	
THERMAL					
Operating temperature range	Ui nominal Full power Base Plate temperature	Minimum Maximum	°C	-40 85	
Base Plate to Air thermal resistance	Ui Full Load	Typical	°C/W	3	
RELIABILITY Mean time between failures (MTBF)					
According to Mil HDBK 217F	Ground fixed (Gf) 40°C Ground fixed (Gf) 85°C		Hours	TBD	



3-PERFORMANCE

Efficiency

Power derating:

Transient power area is in hatched blue

4-APPLICATION NOTE

4.1-THERMAL MANAGEMENT

The GRD40A thermal management can be achieved in 2 different ways:

Air cooling: Due to its high base-plate to air thermal resistance air cooling (with no heat-sink or cold plate) is possible for GRD40A-N only for low power or short duration operation. The max ambient temperature will be:

$$Tamb = BpT - Po * \left(\frac{1}{eff} - 1\right) * Rth$$

 T_{amb} = max ambient temperature.

BpT = max base plate temperature.

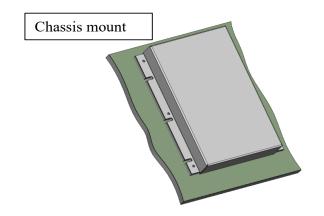
eff = efficiency.

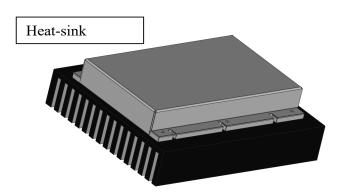
 R_{th} = baseplate to air thermal resistance.

Po = output power in watts.

The most common use of GRD40A is application where Board baseplate is screwed down to a heat-sink or the cold plate of a chassis. In this case The max ambient temperature will be:

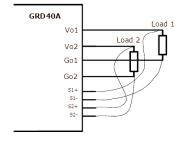
$$Tamb = BpT - Po * \left(\frac{1}{eff} - 1\right) * Rth$$

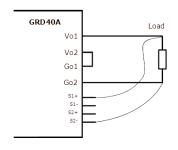

 T_{amb} = max ambient temperature. BpT = max base plate temperature.


eff = efficiency.

 R_{th} = heat-sink or chassis to air thermal

Resistance.


Po = output power in watts.

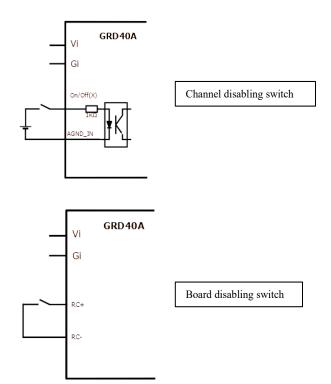


4.2-SENSE FUNCTION

Sense terminals can be connected to the load to compensate for possible output cables losses. Sense terminals can compensate up to 10% output voltage drop. If not used senses should not be connected. When outputs channels are connected in series and sense function is implemented, only Sense1+ and Sense2-must be used.

4-APPLICATION NOTE

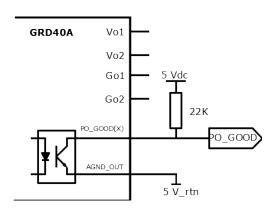
4.3-ON-OFF FUNCTION


ON/OFF1, **ON/OFF2**: Each channel of the board can be disabled individually when output configuration is not "connected in series". The channel is disabled when voltage is applied between ON/OFF1 or ON/OFF2 and AGND_IN. See electrical specification for voltage and current values of ON/OFF signal. The channels are enabled with ON/OFF(X) unconnected. These ON/OFF(X) control lines are galvanically isolated, from other parts of the board electrical circuit.

When the outputs are "connected in series" both the ON/OFF(X) signal will disable the 2 channels.

When ON/OFF(X) are active only internal dc/dc converters are disabled, while the front-end of the board is still in operation.

RC+-RC-: when RC+ and RC- are connected together, the input stage of the board is no longer biased, and whole consumption is reduced to the minimum value. See electrical specification section for more details.

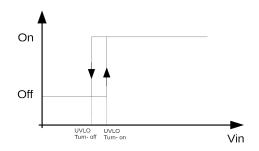

These RC+ and RC- are not galvanically isolated, from other parts of the board electrical circuit, therefore it is recommended to control those pins with a dry contact only.

4.4-POWER GOOD SIGNALS

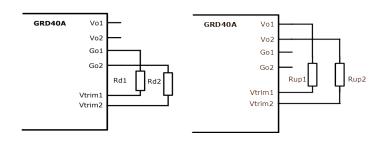
The GRD40A provides user with output power good (PO_GOOD1, PO_GOOD2) signals that are activated when outputs voltage reach their expected values. The signals are provided through transistor of opto-coupler that get saturated when board operate in nominal conditions, and transistor get open when an input or output voltage are not in their nominal values.

Warning: When an output voltage is trimmed, the corresponding PO_GOOD will have threshold values changed. The opposite diagrams show a suggested circuit to use power good signals in a 0 -5V range.

FC21-108 02/24 Revision C page8 /13

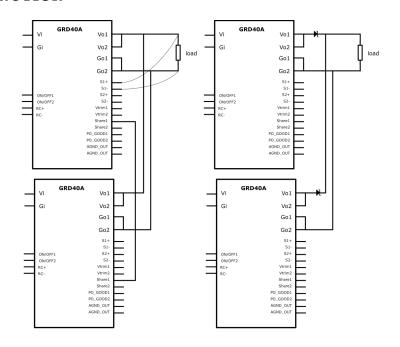


4-APPLICATION NOTE


4.4-INPUT UNDERVOLTAGE LOCK OUT (UVLO)

An undervoltage protection is implemented to keep the converter off as long as the input voltage has not reached the UVLO turn-on threshold (see electrical specification for threshold value)

4.5-OUTPUT VOLTAGE TRIM


Outputs voltages of GRD40A can be trimmed up and down according to values specified in § electrical specifications. To trim outputs connect Rup(x) as described into opposite diagram. To trim down, connect Rd(x) as described into opposite diagram. Please refer to MGDM-201 datasheet for Rup(x) or Rd(x) calculation. Each channel can have its proper output voltage trimmed independently, but when channels are connected in series, the current into each channel being the same, it will define each channel output power base on channel voltage.

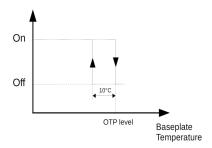
4.6-PARALLELING And REDUNDANCY FUNCTION

<u>Paralleling function</u>: in order to boost the output power of a power supply, it is possible to connect outputs of several GRD40A in parallel, with current sharing activated. When the 2 channels of a GRD40A are connected in parallel, the Share1 and Share2 signals of this GRD40A are connected together, only one of them need to be used to parallel several GRD40A.

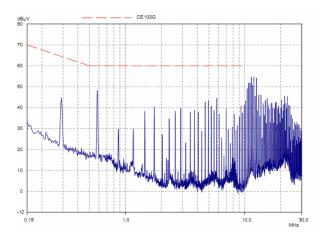
Redundancy function: Several GRD40A can be connected to the same load for redundancy purposes. In this case, Oring diodes must be used (their losses can be compensated using trim function) If GRD40A-N are connected in redundancy mode, the shares (x) pins and ON/OFF2 must not be connected.

4-APPLICATION NOTE

4.7-OUTPUT OVERVOLTAGE PROTECTION (OVP)

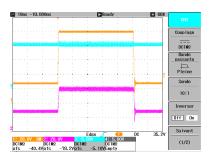

Please refer to MGDM-201 datasheet for over voltage protection

4.8-OVER-CURRENT PROTECTION (OCP)


Please refer to MGDM-201 datasheet for over current protection

4.9-OVER-TEMPERATURE PROTECTION

A thermal protection device adjusted at the OTP level (see characteristics) will inhibit the board as long as the overheat is present and will resume to normal operation automatically once the overheat is removed. The effectiveness of the OTP function is guaranteed only when the board is mounted on a heatsink.

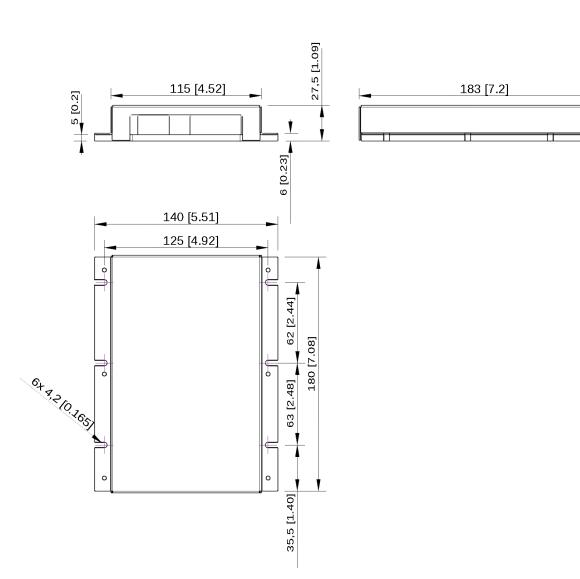


4.10-Mil STD 461 CONDUCTED EMI COMPLIANCE

GRD40A-H-I Vin= 28V Pout =400W

4.11-1275 SURGE COMPLIANCE

GRD40A-H-F Vin= Ch1, Vout = Ch3 *Ch2 shows the internal voltage at MGDS-201 input

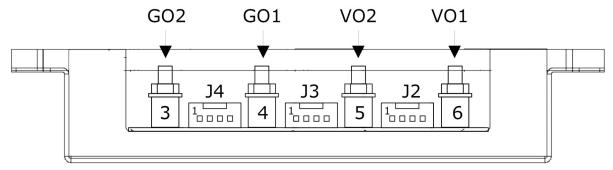


4-APPLICATION NOTE

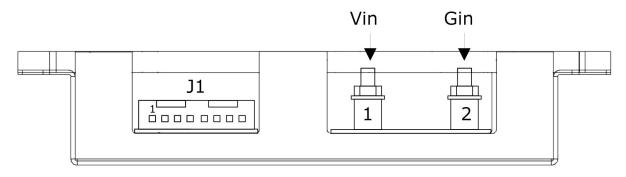
4.12-MECHANICAL DRAWINGS

Material: baseplate: aluminum Cover: stainless steel SUS 430 with Nickel plating Cover: thickness 1mm

Dimensions in mm [Inches], general tolerance +/- 0.2



4-APPLICATION NOTE


Connector

Stud Connector

4.13-CONNECTIONS, PRODUCT MARKING

Front side input connections

Back side output connections

Stud Connector	2	-Input(Gin)
Stud Connector	3	-Output 2(Go2)
Stud Connector	4	-Output 1(Go1)
Stud Connector	5	+Output 2(Vo2)
Stud Connector	6	+Output 1(Vo1)
Connector	Pin	Designation
J1	1	DNC*
J1	2	AGND_IN
J1	3	On/Off1
J1	4	On/Off2
J1	5	DNC*
J1	6	DNC*
J1	7	RC+
J1	8	RC-

Pin

Designation

+Input(Vin)

Connector	Pin	Designation
J2	1	S1+
J2	2	VTRIM1
J2	3	S1-
J2	4	SHARE1

Connector	Pin	Designation
J4	1	S2+
J4	2	VTRIM2
J4	3	S2-
J4	4	SHARE2

Connector	Pin	Designation
J3	1	AGND_OUT
J3	2	PO_GOOD2
J3	3	AGND_OUT
J3	4	PO_GOOD1

^{*} Do not connect

Stud Connector: M4 (Phos. Bronze) Max. torque=1 N.m (8in.Lbs)

J1 : Molex KK 22-12-4082 Mating connector : Molex KK 22-01-3087 J2,J3,J4 : Molex KK 22-12-4042 Mating connector : Molex KK 22-01-3047

International Headquarters North American Headquarters

GAÏA Converter - France GAÏA Converter Canada, Inc 18 rue caroline Aigle 1405 Transcanada Hwy, Suite 520 33186 LE HAILLAN - FRANCE DORVAL, QUEBEC, H9P 2V9

Tel.:+(33)-5-57-92-12-80 Tel.:(514)-333-3169 Fax:+(33)-5-57-92-12-89 Fax:(514)-333-4519

Information given in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed for the consequence of its use nor for any infringement of patents or other rights of third parties which may result from its use.

These products are sold only according to GAIA Converter general conditions of sale, unless otherwise confirmed by writing. Specifications subject to change without notice.