

30W isolated DC-DC converter Ultra-wide input and regulated dual output

FEATURES

- Ultra-wide 4:1 input voltage range
- High efficiency up to 89% with full load
- No-load power consumption as low as 0.14W
- I/O isolation test voltage 1.5k VDC
- Input under-voltage protection, output shortcircuit, over-voltage, over-current protection
- Operating ambient temperature range: -40°C to +80°C
- Meets CISPR32/EN55032 CLASS A without extra components
- Six-sided metal shielded package

URA2412LD-30WR3G of isolated 30W DC-DC converter products with an ultra-wide 4:1 input voltage and feature efficiencies of up to 89%, input to output isolation is tested with 1500VDC and the converters safely operate ambient temperature of -40°C to +80°C, input under-voltage protection, output short-circuit, over-voltage, over-current protection. They meet CLASS A of CISPR32/EN55032 EMI standards without external components, they are widely used in applications such as data transmission device, battery power supply device, telecommunication device, distributed power supply system, hybrid module system, remote control system, industrial robot and railway fields.

Selection G	Guide						
		Input Volto	age (VDC)	Ou	Itput	Full Load	Capacitive
Certification	Part No.	Nominal (Range)	Max.®	Voltage (VDC)	Current (mA) Max./Min.	Efficiency [®] (%) Min./Typ.	Load [®] (µF)Max.
	URA2412LD-30WR3G	24 (9-36)	40	±12	±1250/0	87/89	1250

Notes:

①Exceeding the maximum input voltage may cause permanent damage;

②Efficiency is measured at nominal input voltage and rated output load;

③The specified maximum capacitive load for positive and negative output is identical.

Item	Operating Conditions	Min.	Тур.	Max.	Unit
Input Current (full load / no-load)	Nominal input voltage		1405/6	1437/16	mA
Reflected Ripple Current	Nominal input voltage		40		
Surge Voltage (1sec. max.)		-0.7		50	
Start-up Voltage				9	VDC
Input Under-voltage Protection		5.5	6.5		
Start-up Time	Nominal input voltage & constant resistance load		10		ms
Input Filter			Pi f	ilter	
Hot Plug			Unavo	ailable	
	Module on	Ctrl pin	open or pull	ed high (3.5·	-12VDC)
Ctrl *	Module off	Ctrl pir	n pulled low	to GND (0-1	-1.2VDC)
	Input current when off		5	8	mA

Note: *The Ctrl pin voltage is referenced to input GND.

ons					
Operating Conditions		Min.	Тур.	Max.	Unit
5%-100% load			±l	±3	
0%-5% load			±l	±5	
Input voltage variation from low to high at	Vo1		±0.2	±0.5	%
full load	Vo2		±0.5	±l	70
5% 100% lo rd	Vo1		±0.5	±l	
5%-100% loda	Vo2		±0.5	±1.5	
Dual output, Vo1 load at 50%, Vo2 load at	range of 10%-100%			±5	%
	Operating Conditions 5%-100% load 0%-5% load Input voltage variation from low to high at full load 5%-100% load	Operating Conditions 5%-100% load 0%-5% load Input voltage variation from low to high at full load 5%-100% load	Operating Conditions Min. 5%-100% load 0%-5% load Input voltage variation from low to high at full load Vo1 \$%-100% load Vo2 \$%-100% load Vo1 Vo2 Vo1 \$%-100% load Vo1 Vo2	Operating Conditions Min. Typ. 5%-100% load ±1 0%-5% load ±1 10%-5% load ±1 10%-5% load ±1 10%-5% load Vo1 100% load Vo2 ±0.5 5%-100% load Vo1 5%-100% load Vo1 Vo2 ±0.5 Vo2 ±0.5	$\begin{tabular}{ c c c c } \hline $Operating Conditions & $Min.$ Typ. $Max.$ \\ \hline $5\%-100\% \ load & $$ ± 1 ± 3 \\ \hline $0\%-5\% \ load & $$ ± 1 ± 5 \\ \hline $0\%-5\% \ load & $$ ± 1 ± 5 \\ \hline $0\%-5\% \ load & $$ ± 1 ± 5 \\ \hline $1nput voltage variation from low to high at full load $$Vo1$ $$ ± 0.2 ± 0.5 ± 1 \\ \hline $Vo2$ $$ ± 0.5 ± 1.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 1.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 1.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 ± 0.5 \\ \hline $Vo2$ $$ ± 0.5 ± 0.5 $

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

MORNSUN Guangzhou Science & Technology Co., Ltd. reserves the copyright and right of final interpretation

DC/DC Converter URA2412LD-30WR3G

MORNSUN[®]

Transient Recovery Time	25% load step change, nominal input voltage		300	500	μs
Transient Response Deviation	25% load step change, nominal input voltage		±3	±5	%
Temperature Coefficient	Full load			±0.03	%/ ℃
Ripple & Noise ²	20MHz bandwidth, nominal input voltage, 100% load		50	150	mVp-p
Over-voltage Protection		110		160	%Vo
Over-current Protection	Input voltage range	110		190	%lo
Short-circuit Protection		Hicc	up, continue	ous, self-rec	overy
N1 1	•				

Note:

(1)Load regulation for 0%-100% load is \pm 5%;

2 The "parallel cable" method is used for ripple and noise test, please refer to DC-DC Converter Application Notes for specific information.

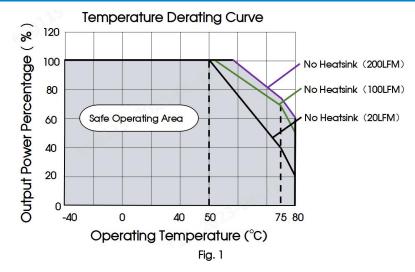
General Specifica	tions				
Item	Operating Conditions	Min.	Тур.	Max.	Unit
Isolation	Input-output Electric Strength test for 1 minute with a leakage current of 1mA max.	1500			VDC
Insulation Resistance	Input-output resistance at 500VDC/60sec	1000			MΩ
Isolation Capacitance	Input-output capacitance at 100kHz/0.1V		2000		pF
Operating Temperature	See Fig. 1	-40		+80	°C
Storage Temperature		-55		+125	
Storage Humidity	Non-condensing	5		95	%RH
Pin Soldering Resistance Temperature	Soldering spot is 1.5mm away from case for 10 seconds			+300	°C
Vibration		IEC/E	N61373 - Co	ategory 1, G	Frade B
Switching Frequency *	PWM mode		300		kHz
MTBF	MIL-HDBK-217F@25°C	1000			k hours
Note:* Switching frequency is m	neasured at full load. The module reduces the switching frequency for light lo	ad (below 50)%) efficiency	/ improvemer	nt.

Mechanical SpecificationsCase MaterialAluminum alloyDimensions50.80 x 25.40 x 11.80 mmWeight27.8g(Typ.)Cooling MethodFree air convection

Electrom	agnetic Co	ompatibility (E	MC)	
Emissions	CE	CISPR32/EN55032	CLASS A (without external components)/CLASS B (see Fig.3- $\!$) for rec	commended circuit)
ETTISSIONS	RE	CISPR32/EN55032	CLASS A (without external components)/CLASS B (see Fig.3- $\!$ for rec	commended circuit)
	ESD	IEC/EN61000-4-2	Contact ±4kV	perf. Criteria B
	RS	IEC/EN61000-4-3	10V/m	perf. Criteria A
Immunity	EFT	IEC/EN61000-4-4	±2kV (see Fig.3-① for recommended circuit)	perf. Criteria B
	Surge	IEC/EN61000-4-5	line to line ±2kV (see Fig.3- $①$ for recommended circuit)	perf. Criteria B
	CS	IEC/EN61000-4-6	10Vr.m.s	perf. Criteria A

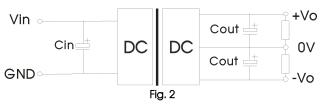
Electrom	nagnetic (Compatibility (EMC) (EN50155)	
	CE	EN50121-3-2 150kHz-500kHz 99dBµV (see Fig.3-2) for recommended circuit)	
Emissions	02	EN55016-2-1 500kHz-30MHz 93dBµV (see Fig.3-2) for recommended circuit)	
LITISSIOTIS	RE	EN50121-3-2 30MHz-230MHz 40dBµV/m at 10m (see Fig.3-2) for recommended a	
	RL	EN55016-2-1 230MHz-1GHz 47dBµV/m at 10m (see Fig.3-2) for recommended	d circuit)
	ESD	EN50121-3-2 Contact ±6kV/Air ±8kV	perf. Criteria A
	RS	EN50121-3-2 20V/m	perf. Criteria A
Immunity	EFT	EN50121-3-2 ±2kV 5/50ns 5kHz (see Fig.3-① for recommended circuit)	perf. Criteria A
	Surge	EN50121-3-2 line to line ±1kV (42 Ω , 0.5µF) (see Fig.3- $\! \oplus$ for recommended circuit)	perf. Criteria A
	CS	EN50121-3-2 0.15MHz-80MHz 10V r.m.s	perf. Criteria A

MORNSUN®


MORNSUN Guangzhou Science & Technology Co., Ltd.

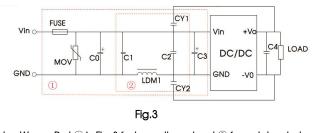
2023.06.27-A/0 Page 2 of 4

MORNSUN Guangzhou Science & Technology Co., Ltd. reserves the copyright and right of final interpretation


Typical Characteristic Curves

Design Reference

1. Typical application


All the DC/DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 5. Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

Vout (VDC)	Cin	Cout
±12	100µF/50V	220µF/25∨

Vin:24VDC

2. EMC compliance circuit

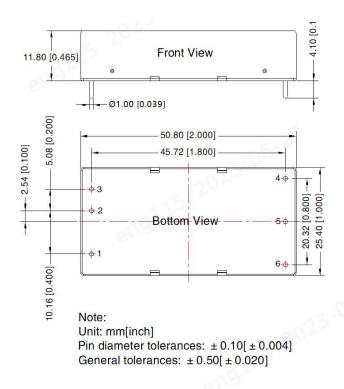
Choose according to actual input FUSE current MOV S20K30 680µF/50V C0 C1/C2 2.2µF/50V C3 330µF/50V 220µF C4 LDM1 3.3µH CY1/CY2 2.2nF/400VAC Safety Y Capacitor

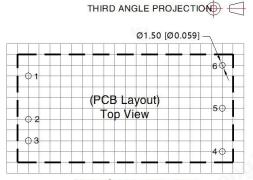
Notes: We use Part (1) in Fig. 3 for immunity and part (2) for emissions test. Selecting based on needs.

4. The products do not support parallel connection of their output

5. For additional information please refer to DC-DC converter application notes on <u>www.mornsun-power.com</u>

MORNSUN Guangzhou Science & Technology Co., Ltd.


2023.06.27-A/0 Page 3 of 4


MORNSUN Guangzhou Science & Technology Co., Ltd. reserves the copyright and right of final interpretation

Model

DC/DC Converter URA2412LD-30WR3G

Dimensions and Recommended Layout

MORNSUN®

Note: Grid 2.54*2.54mm

Pin-	-Out
Pin	Mark
1	Ctrl
2	GND
3	Vin
4	+Vo
5	0V
6	-Vo

Notes:

- 1. For additional information on Product Packaging please refer to <u>www.mornsun-power.com.</u> Packaging Bag Number: 58200035;
- 2. The maximum capacitive load offered were tested at input voltage range and full load;
- 3. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load;
- 4. All index testing methods in this datasheet are based on company corporate standards;
- 5. We can provide product customization service, please contact our technicians directly for specific information;
- 6. Products are related to laws and regulations: see "Features" and "EMC";
- 7. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

Mornsun Guangzhou Science & Technology Co., Ltd.

 Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. China

 Tel: 86-20-38601850
 Fax: 86-20-38601272

 E-mail: info@mornsun.cn
 www.mornsun-power.com

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.06.27-A/0 Page 4 of 4

MORNSUN Guangzhou Science & Technology Co., Ltd. reserves the copyright and right of final interpretation